
© Copyrights 2024, Fusion Software LLC - All Rights Reserved

RabbitMQ

 Feature: Bus

 Editions: Cloud, Corporate, Store

This feature is for development preview only. It is not intended for production, QA, or
demonstration at this time.

This topic is for reference purposes only. Use Rabbit provisioning to automatically create
these resources for each organization.

Fusion RMS uses the RabbitMQ message broker to coordinate communication amongst an organization’s
RMS servers and tenants. This section describes some of the internal details of how that communication
takes place, and can be helpful to diagnose communication problems.

Key Concepts

Before proceeding, it’s important to understand the key concepts behind RabbitMQ. Refer to the
documentation and examples at https://www.rabbitmq.com.

In particular, the following RabbitMQ concepts should be understood:

Virtual hosts
Exchanges
Queues
Routing keys
Bindings
Shovels

https://docs.fusionrms.com/docs/fusion-pos/installation-guide/configuration/provision-rabbitmq/
https://www.rabbitmq.com

© Copyrights 2024, Fusion Software LLC - All Rights Reserved

Virtual Hosts

Each RMS tenant – whether it is a cloud, corporate or store tenant – is associated with its own
RabbitMQ virtual host. The virtual host is responsible for communicating messages to and from
the RMS tenant.

Messages are either:

Local – sent and received by the same tenant (useful for queuing work)
Remote – sent by the tenant, and delivered to another tenant (and virtual
host) for processing

Remote messages must use RabbitMQ shovels to communicate from the source tenant virtual
host to the destination tenant virtual host. Furthermore, it does this through a hub virtual host
that is typically located in an AWS AmazonMQ instance.

Given an example organization named org with two stores, the following diagram shows the
arrangement and naming of virtual hosts:

Of note:

The hub virtual host is named after the organization’s organization ID (org).
The local virtual host for the Corporate tenant is named after the
organization and corp tenant role (org_corp).
The local virtual hosts for the Store tenants are named after the
organization ID and store Site IDs (org_store1 and org_store2).

The Cloud tenant does not get its own local virtual host; it uses the hub virtual host (org).

© Copyrights 2024, Fusion Software LLC - All Rights Reserved

Multiple Brokers

RabbitMQ virtual hosts can be located in one or more broker installations.

For production, there are multiple broker installations:

One for the Fusion Cloud environment, hosted using AmazonMQ.1.
One for the organization corporate environment, using a local RabbitMQ2.
installation.
Typically one for each store environment, each using local RabbitMQ3.
installations

For simple deployments – where the organization’s corporate and store environments
are combined on the same network – a single broker instance can serve both
corporate and store virtual hosts.

For development, virtual hosts can be located either:

On a single RabbitMQ broker running on localhost
To test offline message delivery: on a localhost broker as well as a hub
broker hosted using AmazonMQ.

Routing Keys

RMS sends and publishes messages using a routing key, which determines how the message
should be routed to its intended recipient(s). The following routing key formats are used:

default
Send the message directly to the same RMS tenant, using the default
queue.
RMS typically uses these types of messages to offload processing to
background tasks.

error
Send the message directly to the same RMS tenant, using the error
queue.

© Copyrights 2024, Fusion Software LLC - All Rights Reserved

RMS uses these types of messages to record unexpected errors
encountered while processing other incoming messages.

local.{class}
Publish the message directly to the same RMS tenant.
The message class indicates the type – and priority – of the message,
indicating which queue should receive the message.
Currently, there is only the default class. These local.default messages
are routed to the default queue.
This behavior is similar to the default message, except that a published
message does not result in an error if it is not handled by the RMS
tenant.

remote.{dest}.{class}
Publish the message to a remote tenant, using the hub virtual host to
deliver the message.
The message dest indicate which tenants should receive the message.
The message class indicates the type – and priority – of the message,
indicating which queue should receive the message.

The available message destinations are as follows:

cloud – the Cloud tenant.
corp – the Corporate tenant.
all – all tenants, including the tenant that sent the message.
stores – all store tenants.
xcloud – all tenants, except the Cloud tenant. This may include the tenant
that sent the message.
xcorp – all tenants, except the Corporate tenant. This may include the tenant
that sent the message.
xstores – all tenants, except store tenants (i.e. the Cloud and Corporate
tenant). This may include the tenant that sent the message.
Other values are the Site ID of the store that should receive the message.
The Site ID is configured the first time the store tenant is configured.

The virtual host topologies listed below describe how the routing key is used to deliver
messages.

© Copyrights 2024, Fusion Software LLC - All Rights Reserved

Local Topology (Corporate and Store)

The local virtual host for a corporate or store tenant defines the same RabbitMQ exchanges,
queues, and bindings.

The local virtual host is provisioned with the following:

A default queue to receive messages with a default message class and priority.
An error queue to receive error messages that RMS uses to record unexpected errors while
processing other messages.
A RebusDirect direct exchange that forwards default and error direct messages to their
respective queues.
A RebusTopics direct exchange that:

Forwards local default-class messages to the default queue.
Forwards remote messages to the outbound queue.

An outbound queue that temporarily stores messages for other tenants.

A ToHub RabbitMQ shovel forwards remote messages stored in the outbound queue to the hub
virtual host. The shovel will deliver the remote messages in near real-time if an internet
connection is available; otherwise remote messages remain in the outbound queue until an
internet connection is available.

Similarly, a FromHub RabbitMQ shovel forwards incoming messages from the hub virtual host –
i.e. messages sent from other tenants – to the Inbound topic exchange. The Inbound exchange

© Copyrights 2024, Fusion Software LLC - All Rights Reserved

then:

Forwards messages with the default message class to the default queue.

Hub Topology

The primary purpose of the hub virtual host is to route messages from a tenant to one or more
other tenants. Provisioning this virtual host:

Creates a set of exchanges that are used by all tenants.
One queue for each corporate and store tenant.
Queue bindings dependent on the tenant role (corporate or store).

The topology for an organization with one corporate tenant and one store tenant is shown
below:

© Copyrights 2024, Fusion Software LLC - All Rights Reserved

The hub virtual host is provisioned with a HubInbound topic exchange to receive incoming
messages from other tenants. The ToHub shovel for the corporate and store local virtual host
forwards remote messages to this exchange.

From there, messages are forwarded to fanout exchanges based on the message destination
(see message destination types in routing keys above).

Tenant Queues

When a corporate or store tenant is provisioned, it will create a tenant queue on the hub virtual
host to store its messages that are incoming from other tenants.

The name of the queue is based on the tenant role and site ID:

hub_corp is the queue for the Corporate tenant.
hub_{SiteId} is the queue for a Store tenant, identified by its SiteId.

The tenant queue is bound to the fanout exchanges, based on the tenant role:

The Corporate tenant is bound to the HubAll, HubXStores and HubXCloud exchanges.
Store tenants are bound to the HubAll, HubStores, HubXCorp and HubXCloud exchanges.

In addition, the tenant queue is bound to the HubInbound exchange for any messages that are
intended directly for the tenant (e.g. remote.corp.* or remote.store1.*).

The tenant queue will store the tenant messages, until the tenant’s local FromHub shovel
forwards them to the tenant’s local virtual host for processing. The shovel will deliver the
remote messages in near real-time if an internet connection is available; otherwise remote
messages remain in the outbound queue until an internet connection is available.

Shovels

The following diagram shows how the shovels between the local and hub virtual hosts are
configured for an example store store1:

© Copyrights 2024, Fusion Software LLC - All Rights Reserved

The shovels are maintained at the local virtual host, as network communications and firewalls
typically allow connections from the local network to the cloud – but not the reverse. Even
though network communication is one direction, a shovel can be configured to send data in
either direction.

Hub Topology (Cloud)

As the hub virtual host is already deployed in the cloud (AmazonMQ), as an optimization we do
not introduce a separate local virtual host for the cloud tenant. The cloud tenant accesses the
hub virtual host directly.

As a result, the hub virtual host also includes exchanges and queues for the Cloud tenant. The
topology of these items are similar to the corporate and store tenants, except that:

No shovels are necessary – messages are delivered within the same virtual host.
There is no outbound queue. Outgoing remote messages in the RebusTopics exchange are
routed directly to the shared HubInbound exchange.
There is no separate tenant queue. Incoming remote messages are routed directly to the
cloud tenant’s Inbound exchange.

© Copyrights 2024, Fusion Software LLC - All Rights Reserved

And within the same hub virtual host, the exchanges and queues specific to the cloud tenant
are:

© Copyrights 2024, Fusion Software LLC - All Rights Reserved

